Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(6): 8506-8519, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571108

ABSTRACT

In this paper, a 1 × 2 photonic switch is designed based on a silicon-on-insulator (SOI) platform combined with the phase change material (PCM), Sb2S3, assisted by the direct binary search (DBS) algorithm. The designed photonic switch exhibits an impressive operating bandwidth ranging from 1450 to 1650 nm. The device has an insertion loss (IL) from 0.44 dB to 0.70 dB (of less than 0.7 dB) and cross talk (CT) from -26 dB to -20 dB (of less than -20 dB) over an operating bandwidth of 200 nm, especially an IL of 0.52 dB and CT of -24 dB at 1550 nm. Notably, the device is highly compact, with footprints of merely 3 × 4 µm2. Furthermore, we have extended the device's functionality for multifunctional operation in the C-band that can serve as both a 1 × 2 photonic switch and a 3 dB photonic power splitter. In the photonic switch mode, the device demonstrates an IL of 0.7 dB and a CT of -13.5 dB. In addition, when operating as a 3 dB photonic power splitter, the IL is less than 0.5 dB.

2.
Opt Express ; 31(18): 29235-29244, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37710728

ABSTRACT

In this work, we use the inverse design method to design three-channel and four-channel dual-mode waveguide crossings with the design regions of 4.32 µm-wide regular hexagon and 6.68 µm-wide regular octagon, respectively. Based on the highly-symmetric structures, the fundamental transverse electric (TE0) and TE1 modes propagate through the waveguide crossings efficiently. Moreover, the devices are practically fabricated and experimentally characterized. The measured insertion losses and crosstalks of the three-channel and dual-mode waveguide crossing for both the TE0 and TE1 modes are less than 1.8 dB and lower than -18.4 dB from 1540 nm to 1560 nm, respectively. The measured insertion losses of the four-channel and dual-mode waveguide crossing for the TE0 and TE1 modes are less than 1.8 dB and 2.5 dB from 1540 nm to 1560 nm, respectively, and the measured crosstalks are lower than -17.0 dB. In principle, our proposed scheme can be extended to waveguide crossing with more channels and modes.

3.
Opt Express ; 31(17): 27393-27406, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37710816

ABSTRACT

In this work, we design, fabricate, and characterize a different-mode (waveguide-connected) power splitter ((W)PS) by what we believe to be a novel multi-dimension direct-binary-search algorithm that can significantly balance the device performance, time cost, and fabrication robustness by searching the state-dimension, rotation-dimension, shape-dimension, and size-dimension parameters. The (W)PS can simultaneously generate the fundamental transverse electric (TE0) and TE1 mode with the 1:1 output balance. Compared with the PS, the WPS can greatly shorten the adiabatic taper length between the single-mode waveguide and the grating coupler. The measured results of the different-mode (W)PS indicate that the insertion loss and crosstalk are less than 0.9 (1.3) dB and lower than -17.8 (-14.9) dB from 1540 nm to 1560 nm. In addition, based on the tunable tap couplers, the different-mode (W)PS can be extended to multiple output ports with different modes and different transmittances.

4.
Opt Express ; 31(11): 18555-18566, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381565

ABSTRACT

Blindly increasing the channels of the mode (de)multiplexer on the single-layer chip can cause the device structure to be too complex to optimize. The three-dimensional (3D) mode division multiplexing (MDM) technology is a potential solution to extend the data capacity of the photonic integrated circuit by assembling the simple devices in the 3D space. In our work, we propose a 16 × 16 3D MDM system with a compact footprint of about 100 µm × 5.0 µm × 3.7 µm. It can realize 256 mode routes by converting the fundamental transverse electric (TE0) modes in arbitrary input waveguides into the expected modes in arbitrary output waveguides. To illustrate its mode-routing principle, the TE0 mode is launched in one of the sixteen input waveguides, and converted into corresponding modes in four output waveguides. The simulated results indicate that the ILs and CTs of the 16 × 16 3D MDM system are less than 3.5 dB and lower than -14.2 dB at 1550 nm, respectively. In principle, the 3D design architecture can be scaled to realize arbitrary network complexity levels.

5.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37176996

ABSTRACT

Color displays have become increasingly attractive, with dielectric optical nanoantennas demonstrating especially promising applications due to the high refractive index of the material, enabling devices to support geometry-dependent Mie resonance in the visible band. Although many structural color designs based on dielectric nanoantennas employ the method of artificial positive adjustment, the design cycle is too lengthy and the approach is non-intelligent. The commonly used phase change material Ge2Sb2Te5 (GST) is characterized by high absorption and a small contrast to the real part of the refractive index in the visible light band, thereby restricting its application in this range. The Sb2S3 phase change material is endowed with a wide band gap of 1.7 to 2 eV, demonstrating two orders of magnitude lower propagation loss compared to GST, when integrated onto a silicon waveguide, and exhibiting a maximum refractive index contrast close to 1 at 614 nm. Thus, Sb2S3 is a more suitable phase change material than GST for tuning visible light. In this paper, genetic algorithms and finite-difference time-domain (FDTD) solutions are combined and introduced as Sb2S3 phase change material to design nanoantennas. Structural color is generated in the reflection mode through the Mie resonance inside the structure, and the properties of Sb2S3 in different phase states are utilized to achieve tunability. Compared to traditional methods, genetic algorithms are superior-optimization algorithms that require low computational effort and a high population performance. Furthermore, Sb2S3 material can be laser-induced to switch the transitions of the crystallized and amorphous states, achieving reversible color. The large chromatic aberration ∆E modulation of 64.8, 28.1, and 44.1 was, respectively, achieved by the Sb2S3 phase transition in this paper. Moreover, based on the sensitivity of the structure to the incident angle, it can also be used in fields such as angle-sensitive detectors.

6.
Sensors (Basel) ; 23(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050450

ABSTRACT

The magnetic field is a vital physical quantity in nature that is closely related to human production life. Magnetic field sensors (namely magnetometers) have significant application value in scientific research, engineering applications, industrial productions, and so forth. Accompanied by the continuous development of magnetic materials and fiber-sensing technology, fiber sensors based on the Magneto-Refractive Effect (MRE) not only take advantage in compact structure, superior performance, and strong environmental adaptability but also further meet the requirement of the quasi-distributed/distributed magnetic field sensing; they manifest potential and great application value in space detection, marine environmental monitoring, etc. Consequently, the present and prevalent Magneto-Refractive Magnetic Field Fiber Sensors (MR-MFSs) are briefly summarized by this paper, proceeding from the perspective of physicochemical properties; design methods, basic performance and properties are introduced systematically as well. Furthermore, this paper also summarizes key fabrication techniques and future development trends of MR-MFSs, expecting to provide ideas and technical references for staff engaging in relevant research.

7.
Nanomaterials (Basel) ; 12(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234565

ABSTRACT

Analog optical computing (AOC) has attracted great attention over the past few years, because of its ultra-high speed (potential for real-time processing), ultra-low power consumption, and parallel processing capabilities. In this article, we design an adder and an ordinary differential equation solver (ODE) on chip by Fourier optics and metasurface techniques. The device uses the 4f system consisting of two metalenses on both sides and one middle metasurface (MMS) as the basic structure. The MMS that performs the computing is the core of the device and can be designed for different applications, i.e., the adder and ODE solver in this article. For the adder, through the comparison of the two input and output signals, the effect of the addition can be clearly displayed. For the ODE solver, as a proof-of-concept demonstration, a representative optical signal is well integrated into the desired output distribution. The simulation result fits well with the theoretical expectation, and the similarity coefficient is 98.28%. This solution has the potential to realize more complex and high-speed artificial intelligence computing. Meanwhile, based on the direct-binary-search (DBS) algorithm, we design a signal generator that can achieve power splitting with the phase difference of π between the two output waveguides. The signal generator with the insertion loss of -1.43 dB has an ultra-compact footprint of 3.6 µm× 3.6 µm. It can generate a kind of input signal for experimental verification to replace the hundreds of micrometers of signal generator composed of a multi-mode interference (MMI) combination used in the verification of this type of device in the past.

8.
Opt Express ; 30(11): 18250-18263, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221630

ABSTRACT

Infrared (IR) stealth with thermal management is highly desirable in military applications and astronomy. However, developing selective IR emitters with properties suitable for IR stealth and thermal management is challenging. In this study, we present the theoretical framework for a selective emitter based on an inverse-designed metasurface for IR stealth with thermal management. The emitter comprises an inverse-designed gold grating, a Ge2Sb2Te5 (GST) dielectric layer, and a gold reflective layer. The hat-like function, which describes an ideal thermal selective emitter, is involved in the inverse design algorithm. The emitter exhibits high performance in IR stealth with thermal management, with the low emissivity (ɛ3-5 µm =0.17; ɛ8-14 µm =0.16) for dual-band atmospheric transmission windows and high emissivity (ɛ5-8 µm =0.85) for non-atmospheric windows. Moreover, the proposed selective emitter can realize tunable control of thermal radiation in the wavelength range of 3-14 µm by changing the crystallization fraction of GST. In addition, the polarization-insensitive structure supports strong selective emission at large angles (60°). Thus, the selective emitter has potential for IR stealth, thermal imaging, and mid-infrared multifunctional equipment.

9.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808095

ABSTRACT

The nanostructure composed of nanomaterials and subwavelength units offers flexible design freedom and outstanding advantages over conventional devices. In this paper, a multifunctional nanostructure with phase-change material (PCM) is proposed to achieve tunable infrared detection, radiation cooling and infrared (IR)-laser compatible camouflage. The structure is very simple and is modified from the classic metal-dielectric-metal (MIM) multilayer film structure. We innovatively composed the top layer of metals with slits, and introduced a non-volatile PCM Ge2Sb2Te5 (GST) for selective absorption/radiation regulation. According to the simulation results, wide-angle and polarization-insensitive dual-band infrared detection is realized in the four-layer structure. The transformation from infrared detection to infrared stealth is realized in the five-layer structure, and laser stealth is realized in the atmospheric window by electromagnetic absorption. Moreover, better radiation cooling is realized in the non-atmospheric window. The proposed device can achieve more than a 50% laser absorption rate at 10.6 µm while ensuring an average infrared emissivity below 20%. Compared with previous works, our proposed multifunctional nanostructures can realize multiple applications with a compact structure only by changing the temperature. Such ultra-thin, integratable and multifunctional nanostructures have great application prospects extending to various fields such as electromagnetic shielding, optical communication and sensing.

10.
Opt Lett ; 47(7): 1642-1645, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363698

ABSTRACT

In this Letter, we propose collective topological corner modes in all-dielectric photonic crystal (PhC) supercell arrays, where each supercell is a second-order topological insulator. We show that coupled multipole corner modes are embedded in surrounding bulk modes at the Γ point even without the band gap, and individual or superposed dipole corner modes are selectively excited with collective behaviors by incident plane waves. These collective modes possess high-quality factors with an optimized thickness of the slab, and multipole decomposition reveals they are dominated by toroidal dipole and magnetic quadrupoles. Finally, we shrink the nontrivial region in each supercell to one unit-cell limit, where we show that collective corner modes still exist. Potential large-area topological applications are also discussed.

11.
Opt Express ; 30(5): 8049-8062, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299554

ABSTRACT

In this work, we investigate polarization-insensitive dual bound states in the continuum (BICs) at Γ point in symmetric photonic crystal (PhC) slabs. Especially, BICs are tailored by tuning intra- and intercellular optical coupling strengths of PhC slabs. Based on four different approaches, we realize the transition from BIC to quasi-BIC resonances with various dispersion behaviors while maintaining the symmetry of slabs. Also, we show the two resonances are lowest-order even and odd eigenmodes that can match the symmetry of the incident plane wave, and their quality (Q) factors follow the inverse quadratic law except for cases with larger perturbations. Furthermore, multipolar decomposition reveals that even quasi-BICs are dominated by the toroidal dipole and magnetic quadrupole, while odd quasi-BICs are governed by the magnetic dipole and electric quadrupole. Interestingly, an anomalous increase of the Q factor is observed in one case, which is attributed to the mode transformation. Finally, anisotropic coupling adjustment is discussed, which enriches the degrees of freedom to manipulate BICs. This work introduces a novel perspective to tailor BICs at Γ point in PhC slabs and has potential planar photonic applications for nonlinear enhancement and sensing.

12.
Sci Rep ; 11(1): 12842, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34145322

ABSTRACT

In this paper, we use the inverse design method to design an optical interconnection system composed of wavelength demultiplexer and the same direction waveguide crossing on silicon-on-insulator (SOI) platform. A 2.4 µm × 3.6 µm wavelength demultiplexer with an input wavelength of 1.3-1.6 µm is designed. When the target wavelength of the device is 1.4 µm, the insertion loss of the output port is - 0.93 dB, and there is - 18.4 dB crosstalk, in TE0 mode. The insertion loss of the target wavelength of 1.6 µm in TE0 mode is - 0.88 dB, and the crosstalk is - 19.1 dB. Then, we designed a same direction waveguide crossing, the footprint is only 2.4 µm × 3.6 µm, the insertion loss of the wavelength 1.4 µm and 1.6 µm in TE0 mode is - 0.99 dB and - 1 dB, and the crosstalk is - 12.14 dB and - 14.34 dB, respectively. Finally, an optical interconnect structure composed of two devices is used, which can become the most basic component of the optical interconnect network. In TE0 mode, the insertion loss of the output wavelength of 1.4 µm at the output port is - 1.3 dB, and the crosstalk is - 29.36 dB. The insertion loss of the output wavelength of 1.6 µm is - 1.39 dB, and the crosstalk is - 38.99 dB.

13.
Sci Rep ; 10(1): 11757, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678234

ABSTRACT

Based on high symmetric structure, we propose the arbitrary-input and ultra-compact 1 × 2 and 1 × 3 power splitters by utilizing inverse design method. These devices can realize the functionality of power splitting, when the optical field is launched from arbitrary port. The shapes of their structures are 3.8 µm-wide regular hexagon and 4.0 µm-wide regular octagon, respectively. By utilizing 3D fine difference time domain solutions, the simulated results indicate that the excess loss of the 1 × 2 power splitter is less than 1.5 dB from 1,500 to 1,600 nm, and the excess loss and crosstalk of the 1 × 3 power splitter are less than 1.9 dB and lower than - 15.5 dB over 100 nm bandwidth at the centered wavelength of 1,550 nm respectively. In addition, the tolerances to fabrication errors are also investigated.

14.
Opt Express ; 28(11): 17010-17019, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32549511

ABSTRACT

In this paper, we innovatively demonstrate a rotatable direct-binary-search algorithm. Based on this unique inverse design method, the coupling region of nanophotonic device can be realized with multi-shape and multi-rotation pixels. In addition, the novel 1× 2 mode converters with multipurpose design goals on a 220 nm-thick top silicon-on-insulator platform are proposed by utilizing this enhanced algorithm, which can simultaneously achieve power splitting and mode conversion. By 3D fine difference time domain solutions, the 1 × 2 mode converter that converts TE0 mode into TE1, with a footprint of 2.7 µm × 2.4 µm, exhibits the excess loss of 0.1 - 0.2 dB (TE1 mode), crosstalk of lower than -20.6 dB (TE0 mode) and reflection loss of lower than -19.5 dB (TE0 mode) from 1500 nm to 1600 nm. The 1 × 2 mode converter that transforms TE0 into TE2 occupies the footprint of 3.6 µm × 3 µm. The excess loss is 0.3 - 0.4 dB (TE2 mode) in the wavelength range of 1500 - 1600 nm. The crosstalks are lower than -17.5 dB (TE1 mode) and -25.1 dB (TE0 mode), and the reflection loss is lower than -18.3 dB (TE0 mode). Besides, the fabrication tolerances caused by both expansion or contraction of etched pattern contour and round corner effect are also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...